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ABSTRACT
Transmission Control Protocol is the most used transmis-
sion layer protocol in the Internet. In addition to reliable
and good performance in transmission between two nodes,
it provides congestion control mechanism that is a major
reason why Internet has not collapsed. Because of its com-
plicated nature, implementations of it can be challenging
to understand. This paper describes fundamental details
of Transmission Control Protocol implementation in Linux
kernel. Focus is on clarifying data structures and segments
route through TCP stack.

1. INTRODUCTION
In May 1974 Vint Cerf and Bob Kahn published paper where
they described an inter-networked protocol, which central
control component was Transmission Control Program [3,
2].Later it was divided into modular architecture and in 1981
Transmission Control Protocol (TCP), as it is know today,
was specified in RFC 793 [7].

Today, TCP is the most used transmission layer protocol
in the Internet [4] providing reliable transmission between
two hosts through networks [7]. In order to gain good per-
formance for communication, implementations of TCP must
be highly optimized. Therefore, TCP is one of the most com-
plicated components in Linux networking stack. In kernel
3.5.4, it consists of over 21000 lines of code under net/ipv4/
-directory (all tcp*.c files together), while IPv4 consist of
less than 13000 lines of code (all ip*.c files in the same di-
rectory). This paper explains the most fundamental data
structures and operations used in Linux to implement TCP.

TCP provides reliable communication over unreliable net-
work by using acknowledgment messages. In addition to
provide resending of the data, TCP also controls its sending
rate by using so-called ’windows’ to inform the other end
how much of data receiver is ready to accept.

As parts of the TCP code are dependent on network layer
implementation, the scope of this paper is limited to IPv4
implementation as it is currently supported and used more
widely than IPv6. However, most of the code is shared be-
tween IPv4 and IPv6, and tcp ipv6.c is the only file related
to TCP under net/ipv6/. In addition, TCP congestion con-
trol will be handled in a separate paper, so it will be handled
very briefly. If other assumptions is made it is mentioned in
the beginning of the related section.

Table 1: Most important files of TCP
File Description
tcp.c Layer between user and kernel

space
tcp output.c TCP output engine. Handles out-

going data and passes it to network
layer

tcp input.c TCP input engine. Handles incom-
ing segments.

tcp timer.c TCP timer handling
tcp ipv4.c IPv4 related functions, receives seg-

ments from network layer
tcp cong.c Congestion control handler, in-

cludes also TCP Reno implementa-
tion

tcp [veno|vegas|..].c Congestion control algorithms,
named as tcp NAME.c

tcp.h Main header files of TCP. struct
tcp sock is defined here. Note that
there is tcp.h in both include/net/
and include/linux/

Paper structure will be following: First section “Overview
of implementation” will cover most important files and basic
data structures used by TCP (sk buff, tcp sock), how data
is stored inside these structures and how different queues
are implemented, what timers TCP is using and how TCP
sockets are kept in memory. Then socket initialization and
data flows through TCP is discussed. Section “Algorithms,
optimizations and options” will handle logic of TCP state
machine, explain what is TCP fast path and discuss about
socket options that can be used to modify behaviour of TCP.

2. OVERVIEW OF IMPLEMENTATION
In this section basic operation of TCP in Linux will be ex-
plained. It covers the most fundamental files and data struc-
tures used by TCP, as well as functions used when we are
sending to or receiving from network.

The most important files of implementation are listed in
table 1. In addion to net/ipv4/ where most TCP files are
located, there are also few headers located in include/net/
and include/linux/ -directories.
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Figure 1: Data storage inside structure sk buff

2.1 Data structures
Data structures are crucial sections of any software in or-
der of performance and re-usability. As TCP is a highly
optimized and remarkably complex entirety, robust under-
standing of data structures used is mandatory for mastering
the implementation.

2.1.1 struct sk_buff
struct sk buff (located in include/linux/skbuff.h) is used
widely in the network implementation in Linux kernel. It
is a socket buffer containing one slice of the data we are
sending or receiving. In Figure 1 we see how data is stored
inside structure. Data is hold in the continuous memory
area surrounded by empty spaces, head and tail rooms. By
having these empty spaces more data can be added to before
or after current data without needing to copy or move it, and
minimize risk of need to allocate more memory. However, if
the data does not fit to space allocated, it will be fragmented
to smaller segments and saved inside struct skb shared
info that lives at the end of data (at the end pointer).

All the data cannot be held in one large segment in the
memory, and therefore we must have several socket buffers
to be able to handle major amounts of data and to resend
data segment that was lost during transmission to receiver.
Because of that need of network data queues is obvious. In
Linux these queues are implemented as ring-lists of sk buff
structures (Figure 2). Each socket buffer has a pointer to the
previous and next buffers. There is also special data struc-
ture to represent the whole list, known as struct sk buff
head. More detailed information about the data queues is
in section 2.1.3.

In addition data pointers, sk buff also has pointer to owning
socket, device from where data is arriving from or leaving
by and several other members. All the members are docu-

struct sk_buff_head

struct sk_buff struct sk_buff

struct sk_buffstruct sk_buff

struct sk_buff

Figure 2: Ring-list of sk buffs

mented in skbuff.h.

2.1.2 struct tcp_sock
struct tcp sock (include/linux/tcp.h) is the core structure
for TCP. It contains all the information and packet buffers
for certain TCP connection. Figure 3 visualizes how this
structure is implemented in Linux. Inside tcp sock there
is a few other, more general type of sockets. As a next,
more general type of socket is always first member of socket
type, can a pointer to socket be type-casted to other type of
socket. This allows us to make general functions that han-
dles with, for example, struct sock, even in reality pointer
would be also a valid pointer to struct tcp sock. Also de-
pending on the type of the socket can different structure
be as a first member of the certain socket. For example,
as UDP is connection-less protocol, first member of struct
udp sock is struct inet sock, but for struct tcp sock
first member must be struct inet connection sock, as it
provides us features needed with connection-oriented proto-
cols.

From Figure 3 it can be seen that TCP has many packet
queues. There is receive queue, backlog queue and write
queue (not in figure) under struct sock, and prequeue and
out-of-order queue under tcp sock. These different queues
and their functions are explained in detail in section 2.1.3.

struct inet connection sock (include/net/ inet connection
sock)is a socket type one level down from the tcp sock. It
contains information about protocol congestion state, pro-
tocol timers and the accept queue.

Next type of socket is struct inet sock (include/net/inet
sock.h). It has information about connection ports and IP-
addresses.

Finally there is general socket type struct sock. It contains
two of TCP’s three receive queues, sk receive queue and sk
backlog, and also queue for sent data, used with retransmis-
sion.

2.1.3 Data queues
There is four queues implemented for incoming data: receive
queue, prequeue, backlog queue and out-of-order queue. In
normal case when segment arrives and user is not waiting
for the data, segment is processed immediately and the data
is copied to the receive buffer. If socket is blocked as user
is waiting for data, segment is copied to prequeue and user
task is interrupted to handle the segment. If user is handling
segments at the same time when we receive a new one, it will
be put to the backlog queue, and user context will handle
the segment after it has handled all earlier segments. If the
segment handler detects out-of-order segment, it will be put
to the out-of-order queue and copied to the receive buffer
after the missing segments have been arrived.

Figure 4 visualizes use of receive, pre- and backlog-queues.

2.1.4 Hash tables
Sockets are located in kernel’s hash table from where them
are fetched when a new segment arrives or socket is otherwise
needed. Main hash structure is struct inet hashinfo (in-
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Figure 3: Socket structures involved in TCP connection

clude/net/inet hashtables.h), and TCP uses it as a type of
global variable tcp hashinfo located in net/ipv4/tcp ipv4.c.

struct inet hashinfo has three main hash tables: One for
sockets with full identity, one for bindings and one for lis-
tening sockets. In addition to that, full identity hash table
is divided in to two parts: sockets in TIME WAIT state and
others.

As hash tables are more general and not only TCP specific
part of kernel, this paper will not go into logic behind these
more deeply.

2.1.5 Other data structures
There is also other data structures that must be known in
order to understand how TCP stack works. struct proto
(include/net/sock.h) is a general structure presenting trans-
mission layer to socket layer. It contains function pointers
that are set to TCP specific functions in net/ipv4/tcp ipv4.c,
and applications function calls are eventually, through other
layers, mapped to these.

struct tcp info is used to pass information about socket
state to user. Structure will be filled in function tcp get
info(). It contains values for connection state (Listen, Es-
tablished, etc), congestion control state (Open, Disorder,
CWR, Recovery, Lost), receiver and sender MSS, rtt and
various counters.

2.2 TCP timers
To provide reliable communication with good performance,
TCP uses four timers: Retransmit timer, delayed ack timer,
keep-alive timer and zero window prope timer. Retransmit,
delayed ack and zero window probe timers are located in
struct inet connection sock, and keep-alive timer can be
found from struct sock (Figure 3).

Although there is dedicated timer handling file net/ipv4/tcp
timer.c, timers are set and reset in several locations in the

code as a result of events that occur.

2.3 Socket initialization
TCP functions available to socket layer are set to previ-
ously explained (section 2.1.5) struct proto in tcp ipv4.c.
This structure will be held in struct inet protosw in af
inet.c, from where it will be fetched and set to sk->sk prot
when user does socket() call. During socket creation in the
function inet create() function sk->sk prot->init() will be
called, which points to tcp v4 init sock(). From there the
real initialization function tcp init sock() will be called.

Address-family independent initialization of TCP socket oc-
curs in tcp init sock() (net/ipv4/tcp.c). The function will be
called when socket is created with socket() system call. In
that function fields of structure tcp sock are initialized to de-
fault values. Also out of order queue will be initialized with
skb queue head init(), prequeue with tcp prequeue init(), and
TCP timers with tcp init xmit timers(). At this point, state
of the socket is set to TCP CLOSE.

2.3.1 Connection socket
Next step to do when user wants to create a new TCP con-
nection to other host is to call connect(). In the case of TCP,
it maps to function inet stream connect(), from where sk-
>sk prot->connect() is called. It maps to TCP function
tcp v4 connect().

tcp v4 connect() validates end host address by using ip
route connect() function. After that inet hash connect()
will be called. inet hash connect() selects source port for
our socket, if not set, and adds the socket to hash tables.
If everything is fine, initial sequence number will be fetched
from secure tcp sequence number() and the socket is passed
to tcp connect().

tcp connect() calls first tcp connect init(), that will initial-
ize parameters used with TCP connection, such as maximum
segment size (MSS) and TCP window size. After that tcp
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(without out of order queue)

connect() will reserve memory for socket buffer, add buffer
to sockets write queue and passes buffer to function tcp
transmit skb(), that builds TCP headers and passes data
to network layer. Before returning tcp connect() will start
retransmission timer for the SYN packet. When SYN-ACK
packet is received, state of socket is modified to ESTAB-
LISHED, ACK is sent and communication between nodes
may begin.

2.3.2 Listening socket
Creation of listening socket should be done in two phases.
Firstly, bind() must be called to pick up port what will be
listened to, and secondly, listen() must be called.

bind() maps to inet bind(). Function validates port number
and socket, and then tries to bind the wanted port. If ev-
erything goes fine function returns 0, otherwise error code
indicating problem will be returned.
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Figure 5: Data flow from network to user

Function call listen() will become to function inet listen().
inet listen() performs a few sanity checks, and then calls
function inet csk listen start(), which allocates memory for
socket accept queue, sets socket state to TCP LISTEN and
adds socket to TCP hash table to wait incoming connections.

2.4 Data flow through TCP in kernel
Knowing the rough route of incoming and outgoing segments
through the layer is on of the most important part of TCP
implementation to understand. In this section a roughly
picture of it in most common cases will be given. Handling
of all the cases is not appropriate and possible under the
limits of this paper.

In this section it is assumed that DMA (CONFIG NET DMA)
is not in use. It would be used to offload copying of data to
dedicated hardware, thus saving CPU time. [1]

2.4.1 From the network
Figure 5 shows us a simplified summary about incoming data
flow through TCP in Linux kernel.

In the case of IPv4, TCP receives incoming data from net-
work layer in tcp v4 rcv() (net/ipv4/tcp ipv4.c). The func-
tion checks if packet is meant for us and finds the match-
ing TCP socket from the hash table using IPs and ports as
the keys. If the socket is not owned by user (user context
is not handling the data), we first try to put the packet
to prequeue. Prequeuing is possible only when user con-
text is waiting for the data. If prequeuing was not possible,
we pass the data to tcp v4 do rcv(). There socket state is
checked. If state is TCP ESTABLISHED, data is passed
to tcp rcv established(), and copied to receive queue. Oth-
erwise buffer is passed to tcp rcv state process(), where all
the other states will be handled.

If the socket was not owned by user in function tcp v4 rcv(),
data will be copied to the backlog queue of the socket.

When user tries to read data from the socket (tcp recvmsg()),
queues must be processed in order. First receive queue, then
data from prequeue will be waited, and when the process
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ready to release socket, packets from backlog will be copied
to the receive queue. Handling of the queues must be pre-
served in order to ensure that data will be copied to user
buffer in the same order as it was sent.

Figure 4 visualizes the overall queuing process.

2.4.2 From the user
Figure 6 shows us a simplified summary about outgoing data
flow through TCP in Linux kernel.

When user-level application writes data to TCP socket, first
function that will be called is tcp sendmsg(). It calculates
size goal for segments and then creates sk buff buffers of cal-
culated size from the data, pushes buffers to write queue and
notifies TCP output engine of new segments. Segments will
go through TCP output engine and end up to tcp transmit
skb().

tcp write xmit takes care that segment is sent only when it is
allowed to. If congestion control, sender window or Nagle’s
algorithm prevent sending, the data will not go forward.
Also retransmission timers will be set from tcp write xmit,
and after data send, congestion window will be validated
referring to RFC 2861 [5].

tcp transmit skb() builds up TCP headers and passes data
to network layer by calling function queue xmit() found from
struct inet connection sock from member icsk af ops.

3. ALGORITHMS, OPTIMIZATIONS AND
OPTIONS

This section will go through a few crucial parts of implemen-
tation and clarify why these are important features to have
and to work properly in a modern TCP implementation.

3.1 TCP state machine
There is several state machines implemented in Linux TCP.
Probably most known TCP state machine is connection state
machine, introduced in RFC 793 [7]. Figure 3.1 presents
states and transitions implemented in kernel. In addition to
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Figure 7: TCP connetion state machine in Linux
kernel

connection state machine TCP has own state machine for
congestion control.

The most important function in TCP state handling is tcp
rcv state process(), as it handles all the states except ES-
TABLISHED and TIME WAIT. TIME WAIT is handled in
tcp v4 rcv(), and state ESTABLISHED in tcp rcv established().

As stated, TIME WAIT is handled in tcp v4 rcv(). Depend-
ing on return value of tcp timewait state process, packet
will be discarded, acked or processed again with a new socket
(if the packet was SYN initializing a new connection). Im-
plementation of function is very clean and easy to follow.

3.2 Congestion control
At first TCP did not have specific congestion control algo-
rithms, and due to misbehaving TCP implementations In-
ternet had first ’congestion collapse’ in October 1988. In-
vestigation on that leaded to first TCP congestion control
algorithms described by Jacobson in 1988 [6]. However, it
took almost 10 years before official RFC based on Jacobson’s
research on congestion control algorithms came out [8].

Main file for TCP congestion control in Linux is tcp cong.c.
It contains congestion control algorithm database, functions
to register and to active algorithm and implementation of
TCP Reno. Congestion algorithm is linked to rest of the
TCP stack by using struct tcp congestion ops, that has
function pointers to currently used congestion control algo-
rithm implementation. Pointer to the structure is found in
struct inet connection sock (member icsk ca ops), see it
at Figure 3.

Important fields for congestion control are located in struct
tcp sock (see section 2.1.2). Being the most important vari-



able, member snd cwnd presents sending congestion window
and rcv wnd current receiver window. Congestion window
is the estimated amount of data that can be in the network
without data being lost. If too many bytes is sent to the
network, TCP is not allowed to send more data before an
acknowledgment from the other end is received.

As congestion control is out of scoop of this paper, it will
not be investigated more deeply.

3.3 TCP fast path
Normal, so-called slow path is a comprehensive processing
route for segments. It handles special header flags and out-
of-order segments, but because of that, it is also requiring
heavy processing that is not needed in normal cases during
data transmission.

Fast path is an TCP optimization used in tcp rcv established()
to skip unnecessary packet handling in common cases when
deep packet inspection is not needed. By default fast path
is disabled, and before fast path can be enabled, four things
must be verifed: The out-of-order queue must be empty, re-
ceive window can not be zero, memory must be available
and urgent pointer has not been received. This four cases
are checked in function tcp fast path check(), and if all cases
pass, will fast path be enabled in certain cases. Even after
fast path is enabled, segment must be verified to be accepted
to fast path.

TCP uses technique known as header prediction to verify
segment to fast path. Header prediction allows TCP input
machine to compare certain bits in the incoming segment’s
header to check if the segment is valid for fast path. Header
prediction ensures that there are no special conditions re-
quiring additional processing. Because of this fast path is
easily turned off by setting header prediction bits to zero,
causing header prediction to fail always. In addition to pass
header prediction, segment received must be next in order
to be accepted to fast path.

3.4 Socket options
Behaving of TCP can be affected by modifying its param-
eters through socket options. System-wide settings can be
accessed by files in the directory /proc/sys/net/ipv4. Op-
tions affecting to only certain TCP connection (socket) can
be set by using getsockopt() / setsockopt() system calls.

System-wide configurations related to TCP are mapped to
kernel in net/ipv4/sysctl net ipv4.c. All implemented op-
tions are listed in include/net/tcp.h. In Linux 3.5.3, there
are 44 of them.

Setting and getting socket options is handled in kernel in do
tcp setsockopt() and do tcp getsockopt() (net/ipv4/tcp.c).
In Linux 3.5.3, there are 22 options, defined in include/lin-
ux/tcp.h.

4. CONCLUSION
Implementation of TCP in Linux is a complex and highly
optimized to gain as high performance as possible. Because
of that it is also time-consuming process to get into code
level in kernel and understand TCP details. This paper

described the most fundamental components of the TCP
implementation in Linux 3.5.3 kernel.
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